Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions

Identifieur interne : 012013 ( Main/Repository ); précédent : 012012; suivant : 012014

Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions

Auteurs : RBID : Pascal:00-0180466

Descripteurs français

English descriptors

Abstract

This article presents computation of optical gain and threshold current density in InGaN-AlGaN quantum wire and dot lasers in the presence of dislocations and surface states. The exciton binding energy including the effect of strain induced piezoelectric field is calculated to be 10-80 meV in InGaN-AlGaN quantum wires and dots, depending on the lateral and transverse dimensions. In contrast to the conventional GaAs or InP based quantum wires, these high binding energy results in large exciton densities, making optical transitions due to excitons dominant over free electrons and holes. Optical gain and threshold current density in InGaN-AlGaN based multiple quantum wire and dot lasers are computed including the effect of dislocation-induced traps. The calculated threshold current density Jth for defect free compressive-strained InGaN quantum wire (50 Å×50 Å) and dot (50 Å × 50 Å × 50 Å) lasers, realized on sapphire or SiC substrates, are shown to yield ultralow threshold current density of 233 and 88 A/cm2, respectively. In the presence of dislocations (1×1010cm-2), the threshold current densities only increase to 924 and 623 A/cm2 for the same wire and dot, when we include the contribution of excitonic transitions. However, the corresponding values increase significantly to 30838 and 11647 A/cm2 if the exciton enhancement is not included. © 2000 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0180466

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions</title>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical Engineering Department, Bucknell University, Lewisburg, Pennsylvania 17837</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Electrical Engineering Department, Bucknell University, Lewisburg</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of Connecticut, Storrs</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jain, F" uniqKey="Jain F">F. Jain</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical Engineering Department, Bucknell University, Lewisburg, Pennsylvania 17837</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Electrical Engineering Department, Bucknell University, Lewisburg</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0180466</idno>
<date when="2000-05-15">2000-05-15</date>
<idno type="stanalyst">PASCAL 00-0180466 AIP</idno>
<idno type="RBID">Pascal:00-0180466</idno>
<idno type="wicri:Area/Main/Corpus">013622</idno>
<idno type="wicri:Area/Main/Repository">012013</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Current density</term>
<term>Dislocations</term>
<term>Electron traps</term>
<term>Excitons</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Quantum well lasers</term>
<term>Semiconductor quantum dots</term>
<term>Semiconductor quantum wires</term>
<term>Surface states</term>
<term>Theoretical study</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7866F</term>
<term>4255P</term>
<term>7320M</term>
<term>7155E</term>
<term>7135C</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Aluminium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Point quantique semiconducteur</term>
<term>Laser puits quantique</term>
<term>Fil quantique semiconducteur</term>
<term>Densité courant</term>
<term>Etat surface</term>
<term>Dislocation</term>
<term>Exciton</term>
<term>Piège électron</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This article presents computation of optical gain and threshold current density in InGaN-AlGaN quantum wire and dot lasers in the presence of dislocations and surface states. The exciton binding energy including the effect of strain induced piezoelectric field is calculated to be 10-80 meV in InGaN-AlGaN quantum wires and dots, depending on the lateral and transverse dimensions. In contrast to the conventional GaAs or InP based quantum wires, these high binding energy results in large exciton densities, making optical transitions due to excitons dominant over free electrons and holes. Optical gain and threshold current density in InGaN-AlGaN based multiple quantum wire and dot lasers are computed including the effect of dislocation-induced traps. The calculated threshold current density J
<sub>th</sub>
for defect free compressive-strained InGaN quantum wire (50 Å×50 Å) and dot (50 Å × 50 Å × 50 Å) lasers, realized on sapphire or SiC substrates, are shown to yield ultralow threshold current density of 233 and 88 A/cm2, respectively. In the presence of dislocations (1×10
<sup>10</sup>
cm
<sup>-2</sup>
), the threshold current densities only increase to 924 and 623 A/cm2 for the same wire and dot, when we include the contribution of excitonic transitions. However, the corresponding values increase significantly to 30838 and 11647 A/cm2 if the exciton enhancement is not included. © 2000 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>87</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUANG (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JAIN (F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Electrical Engineering Department, Bucknell University, Lewisburg, Pennsylvania 17837</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269</s1>
</fA14>
<fA20>
<s1>7354-7359</s1>
</fA20>
<fA21>
<s1>2000-05-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0180466</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This article presents computation of optical gain and threshold current density in InGaN-AlGaN quantum wire and dot lasers in the presence of dislocations and surface states. The exciton binding energy including the effect of strain induced piezoelectric field is calculated to be 10-80 meV in InGaN-AlGaN quantum wires and dots, depending on the lateral and transverse dimensions. In contrast to the conventional GaAs or InP based quantum wires, these high binding energy results in large exciton densities, making optical transitions due to excitons dominant over free electrons and holes. Optical gain and threshold current density in InGaN-AlGaN based multiple quantum wire and dot lasers are computed including the effect of dislocation-induced traps. The calculated threshold current density J
<sub>th</sub>
for defect free compressive-strained InGaN quantum wire (50 Å×50 Å) and dot (50 Å × 50 Å × 50 Å) lasers, realized on sapphire or SiC substrates, are shown to yield ultralow threshold current density of 233 and 88 A/cm2, respectively. In the presence of dislocations (1×10
<sup>10</sup>
cm
<sup>-2</sup>
), the threshold current densities only increase to 924 and 623 A/cm2 for the same wire and dot, when we include the contribution of excitonic transitions. However, the corresponding values increase significantly to 30838 and 11647 A/cm2 if the exciton enhancement is not included. © 2000 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7135C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Fil quantique semiconducteur</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor quantum wires</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Densité courant</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Current density</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etat surface</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Surface states</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Dislocation</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Dislocations</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Piège électron</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electron traps</s0>
</fC03>
<fN21>
<s1>129</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0018M000252</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 012013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 012013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0180466
   |texte=   Enhanced optical gain in InGaN-AlGaN quantum wire and quantum dot lasers due to excitonic transitions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024